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Appendix F
The Effect of Cycle Slips on Recovered

Refractivity

Equation (A-28) gives the error in the recovered refractivity expressed in
terms of the error profile in the bending angle. We use that expression to
estimate the error in recovered refractivity that results from a “flywheeling”
receiver failing to account for a transient in excess Doppler and, hence, bending
angle. To simplify the analysis, we consider the case of a ray encountering a
hard discontinuity ∆N  at a radius ro ; this is the Case A scenario discussed in
the main text. Also, Fig. C-2 shows examples of the transient Doppler profile
for this case. To further simplify the analysis, we set the reference refractivity
profile to zero. Therefore, we need only the Snell term ∆αS  for the transient
incurred when the main ray hits the boundary bearing the discontinuity. From
Eq. (A-48), ∆αS  may be written in the form
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Let us consider the case where ∆N N N= − <+ − 0 , which leads to a
shadow zone where receiver operations might be difficult. In this case, we
assume that the receiver fails to “track” the excess Doppler associated with this
discontinuity; thus, the phase error made by the receiver results in an excess
Doppler profile that is equivalent to a bending angle −∆αS a( ) . If we assume
that the receiver fails to track any portion of the transient from its onset at the
boundary down to an impact parameter value a, then it follows from Eq. (A-28)
that
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where ã  is the impact parameter at the critical refraction altitude
˜ ( )a r No= +1 ∆ . If we insert ∆αS  from Eq. (F-1) into Eq. (F-2) and make some

simple but accurate approximations that exploit the large magnitude of a, it can
be shown that
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If we let ν → ∞ , we obtain

δN̂ N→∆ (F-4)

The recovered refractivity asymptotically assumes a bias equal to the
discontinuity, a not too surprising result, and a negative bias in this case.

The reader may object on the grounds that the receiver almost surely would
be able to track part of the transient, particularly after the signal returns upon
exiting the shadow zone. Suppose that the receiver resumes normal operations
at the flaring point associated with the first contact with the caustic (the
significant interference at this point notwithstanding; see, for example,
Fig. 2-11) and continues to “track” error free at all altitudes below this point. At
the contact point, we have from the thin-screen model and Eq. (2.5-1) that
dh dhLG / = 0 . From Eq. (F-1), it follows that the value of ν  at this point is
given by the condition
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where D  is the limb distance. When ν >>| |∆N , it follows upon expanding
Eq. (F-5a) in powers of ν  that at the contact point
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which is indeed very much larger than | |∆N  for small | |∆N . Hence, the
asymptotic form for δN̂  in Eq. (F-4) still applies even though the receiver is
able to partially recover.

In summary, most of the error from cycle slips is incurred in the shadow
zone for this example, and the recovered refractivity for subsequent altitudes
below this point suffers a negative bias of ∆N . One might expect to find cycle
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slips of opposite polarity associated with scenarios where ∆N > 0 . Although a
∆N  of positive polarity can produce significant interference, it does not cause
shadow zones. Also, we note from Figs. 2-11, 3-23, and 3-24 that the “tracking-
loop stress” at and just below the boundary (i.e., phase acceleration, which
would result from a mis-modeled phase profile in the receiver software, or
equivalently, the difference between the extrapolated Fresnel phase from the
main ray and the actual Fresnel phase in the shadow zone) differs sharply,
depending on the polarity and magnitude of ∆N , with the negative polarity
showing a larger phase windup because of the critical refraction or super-
refracting situation that can occur for this polarity. In a true shadow zone, there
are no rays arriving at the low Earth orbiting (LEO) satellite and, therefore, no
stationary phase path to be tracked, which provides a limiting scenario that will
be approached for large gradients in refractivity near the boundary. There will
be a hiatus in tracking for such zones. On the other hand, when ∆N > 0 , there is
no hiatus; there is at all points at least one stationary phase path to be “tracked”
well before the tangency point of the main ray reaches the boundary. The
challenge for the analyst in this case is to assign the correct phase and
amplitude to each tone in this triplet zone (see Fig. 2-2a) when there is
abundant signal power but significant interference.

We can obtain a rough estimate of the potential cycle slipping in a shadow
zone by evaluating the difference between the stationary value of the Fresnel
phase at a given epoch and the extrapolated phase that would be observed at the
same epoch from the main ray. The latter would be the observed phase
produced by the reference phase profile in the thin screen. Let us choose as the
epoch the first contact with the caustic where the signal power will be near its
maximum value. The extrapolated phase from the main ray would be zero in
this example because we have set the thin-screen reference phase profile to zero
to simplify the analysis. From Eqs.(2.5-1), (2.8-3), (F-1), and (F-5b) it follows
that the stationary value of the Fresnel phase at first contact with the caustic is
given by
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The point of actual maximum in signal-to-noise ratio (SNR) is slightly offset
from hLG

† , which is located at ˆ
LGh . The correction to the geometric optics

prediction for the point of maximum flaring is given in Appendix D. From
Eq. (D-7), it follows that
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and one could as easily evaluate the Fresnel phase at ˆ
LGh  instead of at hLG

† . At
any rate, Eq. (F-6) gives for the Fresnel phase a value of about 1/2 cycle for
∆N = − × −1 10 6 , and 10 cycles for ∆N = − × −1 10 5 , which are the same levels of
cycle slipping seen in Figs. 2-11, 3-23, and 3-24.

A “smart” receiver could be characterized by its ability to account for
adverse signal conditions, i.e., multiple tones, interference, and low SNR, and
by its capability for near-real-time backward signal recovery and phase
connection, etc. Whether these capabilities are found in near-real-time data
products from an advanced receiver design or obtained in non-real time from
advanced (e.g., Fourier) data analysis techniques, is immaterial. In either case,
over a number of trials, one would expect even “smart” designs to have more
difficulty with shadow zones than with strong interference zones. This would
result statistically in a tendency to incur a net loss of cycles over a series of
layers presenting adverse signal conditions involving both polarities for ∆N . If
this surmise is accurate, there would be a tendency for recovered refractivity
profiles to be negatively biased in the lower troposphere for setting occultations
when one cannot reliably deal with adverse signal conditions either by smart
receiver design or by advanced techniques for signal recovery.
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